2019 SBI2 educational session

3D optical microscopy methods, techniques, developments

September 17th, 2019

Seungil Kim, Ph.D.

Lawrence J. Ellison Institute for Transformative Medicine
University of Southern California
Microscopic imaging

Seeing is believing

Seeing is understanding
Outline

1. Biological models
2. Imaging methods
3. Considerations for 3D imaging
4. Technical development
5. 3D Image analysis
Biomimetic model systems

- Cell Monolayer
 - Trans-well
 - Spheroids/Organoids
 - Organ chips
 - Patient-derived Xenograft (PDX)

<table>
<thead>
<tr>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vitro</td>
<td>In vivo</td>
</tr>
<tr>
<td>Simple (Reproduibility)</td>
<td>Complex Physiology (Relevance)</td>
</tr>
<tr>
<td>Easy (Maintenance)</td>
<td>High Cost</td>
</tr>
</tbody>
</table>
3D organoids

(1) Embryonic stem cell-derived organoids
(2) Adult stem cell-derived organoids
(3) iPSC-derived organoids

- 3D growth (Organotypic)
- Genetic & Phenotypic features
- Genetic modification
- Matched normal controls
- Tissue-Stromal interactions
- Drug screening
- Biobanking

Nat. Rev. Cancer
Imaging can provide more information on phenotypic changes

Biochemical assay
- Target-based
- Enzyme
- Receptors
- Channels
- Hormones...
- Kinetics
- Binding

Cell-based assay
- Phenotype-based
 - Transcription
 - Protein expression
 - Cell viability
 - Proliferation...
- MTT
- Cell-Titer Glo

3D imaging
- Spatial information
- Cell and Organoids level
- Microenvironment...
- Immunostaining
- Live imaging

<table>
<thead>
<tr>
<th>3D imaging</th>
<th>Drug response</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 1]</td>
<td>![Image 2]</td>
</tr>
</tbody>
</table>

9/17/2019
Biological imaging methods for 3D models

<table>
<thead>
<tr>
<th></th>
<th>CLSM</th>
<th>SDCM</th>
<th>2PM</th>
<th>3D-SIM</th>
<th>SPIM/LSFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Highest</td>
<td>Moderate</td>
</tr>
<tr>
<td>Z-range</td>
<td>Limited</td>
<td>Limited</td>
<td>Longer than CLSM</td>
<td>Longer than 2PM</td>
<td>Longest</td>
</tr>
<tr>
<td>Scan speed</td>
<td>Slow (Fast)</td>
<td>Faster than CLSM</td>
<td>Slow</td>
<td>Slower than CLSM</td>
<td>Fastest</td>
</tr>
<tr>
<td>Phototoxicity</td>
<td>Highest</td>
<td>Less than CLSM</td>
<td>Less than CLSM</td>
<td>Higher than CLSM</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Confocal laser scanning microscope (CLSM)
Spinning-disk confocal microscope (SDCM)
2-photon microscope (2PM)
3D-structural illumination microscope (3D-SIM)
Selective plane illumination microscope / Light-sheet fluorescence microscope (SPIM/LSFM)

Fischer RS et al. TRENDS in Cell Biology, 2011
Galvano-Resonant hybrid scanner can improve scan speed in CLSM

<table>
<thead>
<tr>
<th>Scanner type</th>
<th>Galvano</th>
<th>Resonant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>4 fps (512x512)</td>
<td>30 fps (512x512)</td>
</tr>
<tr>
<td>Image quality</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Zoom</td>
<td>1x-1,000x</td>
<td>1.5x-8x</td>
</tr>
</tbody>
</table>

Galvano scan

Resonant scan
Biological imaging methods for 3D models

CLSM

2-PM/FLIM

SPDC

3D-SIM

LSFM
Considerations for 3D imaging
1. Sample preparation

- **Fixed**
 - Section
 - Whole mount
 - **Formalin**
 - FFPE
 - Microtome
 - **PFA**
 - Frozen
 - Cryostat

Live

- **Cell**
 - Organoids (+Gel matrix)
 - Tissue explant

- **Considerations for 3D imaging**
 - Tissue damage
 - Missing parts
 - Time consuming

- **3D reconstruction from serial images**
2. 3D Imaging depth

(1) Light Source

LED

Laser

(2) Sample thickness and Imaging direction

Upright

Gel thickness

Height

Inverted

(3) Plate bottom thickness and shape

Whole plate accuracy

Max Volume: 300μL, 200μL, 300μL

U Shape, Spindle Shape, V Shape

9/17/2019

Considerations for 3D imaging
Tissue clearing can improve imaging depth

See Deep Brain (SeeDB)
3. Plate format

- Materials, Stiffness, Clearness
- Shape, Surface area, Color
- Attachment, Cell density
- Culture volume
- Evaporation, Edge effect
- Pipetting error

<table>
<thead>
<tr>
<th>Materials</th>
<th>Chemical Resistance</th>
<th>Binding</th>
<th>Characteristics</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>High</td>
<td>Very low</td>
<td>Hard, Clear, Flat</td>
<td>Fluorescence, High resolution imaging</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>Low</td>
<td>Low-High</td>
<td>Hard, Clear</td>
<td>ELISA, Fluorescence, Luminescence</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>High</td>
<td>Very low</td>
<td>Soft, Opaque</td>
<td>Storage, Fluorescence, Luminescence</td>
</tr>
</tbody>
</table>
4. Labeling and Dyes

Transient labeling: Dyes
- Nuclear/DNA - Hoechst, DRAQ5, Sir-DNA
- Cell - Cell tracker
- Organelles - Mitotracker, Lysotracker
- Cytoskeleton - Sir-actin, Sir-tubulin
- Live/Dead cells – Propidium iodide (PI), DRAQ7

Stable labeling: Lentiviral H2B-GFP/RFP, CRISPR

- Signal reduction
- Bleaching
- Toxicity
- Signal bleed through
- Stable labeling but takes time
- Repeated addition
- Optimization
- Sequential scan, Far red dye

Considerations for 3D imaging
5. Object resolution

Labeled (3D) VS Unlabeled (2D MIP)

H2B-GFP VS Brightfield, DRAQ7

High Resolution (Single cell) VS High Throughput (Organoids)

Cellular details VS Image processing, Data analysis, Imaging speed

9/17/2019 Considerations for 3D imaging
Expansion microscopy can increase resolution and sample clearness

Chojinski TJ et. al., (2016) Nat. Method
Super resolution microscopy can provide ultrastructural resolutions

3D-Photoactivated localization microscopy (3D-PALM) / Stochastic optical reconstruction microscopy (STORM)
- Resolution <20nm, 50-100nm for STORM
- Proteins tagged with photoactivable fluorophores
- Cylindrical lens
- Limitation on the imaging speed

Interferometric Photoactivated localization microscopy (iPALM)
- Axial resolution <20nm
- Samples up to ~300nm in thickness
- Technically complex

Fischer RS et al. TRENDS in Cell Biology, 2011
6. Temporal resolution
6. Temporal resolution

Static time points

- Low temporal resolution
 - 0 hour
 - 4 hour

Time lapse

- High temporal resolution

Considerations for 3D imaging

- Less phototoxicity
- Image processing
- Data analysis
- Dynamic information
- Kinetics, Tracking
- Imaging time
- Data size
Temporal resolutions in drug response

50μM Irinotecan

Day1

Day3

Day4

Cytotoxic

5μM 5-FU

Day1

Day3

Day4

Cytostatic

9/17/2019

Considerations for 3D imaging
Technical development
Autofocus and Z-drift correction (ZDC) for consistent imaging

- Fixed position
- Sample signal-based

Plate bottom
Well bottom

Infra-red light
Immersion objectives

Water immersion objective

- Resolution
- Z information
- Light detection
- Multi-area imaging

PerkinElmer

Effects of Refractive Index Mismatch on Sample Shape

- Olympus

20x Air
NA=0.4

20x Water
NA=1.0

NA: Numerical aperture
Pre-scan for sample re-positioning

Trask OJ et. al., PerkinElmer
3D targeted pre-scan to narrow down ROI

- Increases scan speed and accuracy
- Removes unnecessary scanning area (XYZ)
- Reduces file size

XY targeting

Z targeting

Different ROI size (?)

Different Z range (?)
3D Presci-scan reduces scan time and file size

96 well plate, organoids in gel with 3 channels, 20x objective, 5µm z-step size, Bin 2

Gel height ~ 1,000µm
Organoids size 100-400 µm

Without PreciScan

With PreciScan in XY

With PreciScan in XY and Z

Scan time

139 hrs

9 hours

2 hr
Presci-scan of 3D organoids

5x Pre-scan Fast analysis Select objects 20x Post-scan
Light-field microscopy can image 3D samples faster

→ Computational deconvolution

Prevedel R. et. al. (2014) Nat. Method
3D Image analysis
3D Image analysis software

Commercial

- Easy to use
- Performance
- Established algorithms
- Batch analysis
- Limited flexibility
- Cost

Free open source

- MATLAB, Python, C++
- Fiji-imageJ
- Training & Optimization
- Flexible
- Batch analysis
- Free
- Limited applications
- Data format & Imports
Imaris 3D data analysis - Tracking organoids

1. Upload multiple time points as a single file

2. Organoid Surface Detection

3. Individual Cell Detection

4. Individual Organoid Tracking

5. Exporting Cell Counts & Morphological Data

6. Generate Growth Curves

Growth rate vs. drug concentration
High-throughput image analysis tools

Organoseg
- 4x objective 2x2 binning
 - Raw grayscale image
 - Open-dose morphology by reconstruction
 - Adaptive threshold with multiple window sizes
 - Superimpose thresholds
 - Binarize, filter noise, fill holes, and smooth
 - Identify regions of interest
 - Sort aggregates, remove debris (optional)
 - Extract metrics

OrgaQuant
- EVOS 8-bit tiff
 - Transmitted Light
 - Single plane

CALYPSO
- 512x512 resolution
- Confocal pinhole at 500µm
- 4µs/pixel scan speed
- 6.4mm² central area of well

9/17/2019
3D Image analysis
Questions and further discussions?

- **How can we scale up?**
 - Different plate format → Different cell behaviors?
- **Accuracy, Resolution vs. Throughput**
- **Assay validation**
- **Quality control**
 - Culture: Media/FBS, Passage number…
 - Imaging: Controls, Temperature, Humidity…
 - Analysis: Standard, Training set…
 - Automation: Liquid handling, Integration…
Acknowledgement

USC Ellison Institute
David Agus, MD
Shannon Mumenthaler, PhD
Dan Ruderman, PhD
Jerry Lee, PhD
Emma Fong, PhD
Sarah Choung
Katherin Patsch, PhD
Harish Sura
Carolina Garri, PhD
Roy Lau
Erin Spiller
Patrick Chiang, PhD
Collin Flinders, PhD
John Nicoll
Colleen Garvey
Carly Strelez
Sonya Liu
Danielle Hixon

USC Norris Comprehensive Cancer Center
Heinz-Josef Lenz, M.D., FACP

USC-Olympus Innovation Partnership in Multiscale Bioimaging

USC Translational Imaging Center
Scott Fraser, PhD
Thai Truong, PhD
Kevin Keomanee-Dizon
Thanks!